Fibroblast growth factor 21 inhibition aggravates cardiac dysfunction in diabetic cardiomyopathy by improving lipid accumulation
نویسندگان
چکیده
Diabetic cardiomyopathy (DCM) is one of the major causes of morbidity and mortality in diabetic patients. Recent studies have demonstrated an increased level of fibroblast growth factor 21 (FGF21) in the plasma of DCM patients, and FGF21 has been proven to be a cardiovascular protector of the heart. The present study aimed to further investigate the pathogenic role of FGF21 in DCM, hypothesizing that a lack of FGF21 may promote the progression of DCM by regulating the lipid metabolism, cardiac hypertrophy and cardiac fibrosis, thus deteriorating the cardiac dysfunction. A total of 44 mice were randomly assigned into the normal (n=6), DCM (n=6), normal + scrambled siRNA (n=6), DCM + scrambled siRNA (n=6), normal + FGF21 siRNA (n=10) and DCM + FGF21 siRNA (n=10) groups. Type 1 diabetes mellitus was induced to mice in the DCM groups by streptozotocin injection, while FGF21 expression was inhibited by FGF21 siRNA. Normal and DCM mice administrated with scrambled siRNA were respectively regarded as the controls for the normal + FGF21 siRNA and DCM + FGF21 siRNA groups. In the DCM group, FGF21 inhibition promoted cardiac hypertrophy and fibrosis, and the expression levels of their indicators, including atrial natriuretic factor, α-skeletal actin, collagen type I and III, and transforming growth factor-β, increased, leading to further decreased cardiac function. In addition, FGF21 inhibition in DCM mice elevated the quantity of lipid droplets and the concentration of heart triglycerides, plasma triglycerides and cholesterol levels, accompanied by downregulation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and upregulation of cluster of differentiation (CD)36. Thus, the results indicated that FGF21 inhibition exacerbates the cardiac dysfunction by aggravating the lipid accumulation through regulating the expression levels of PGC-1α and CD36. In conclusion, it is suggested that FGF21 may be a potentially useful agent in the treatment of DCM.
منابع مشابه
FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation
Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21's effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild-type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes ons...
متن کاملFibroblast growth factor 21 deletion aggravates diabetes-induced pathogenic changes in the aorta in type 1 diabetic mice
Fibroblast growth factor 21 (FGF21) is an important regulator in glucose and lipid metabolism, and has been considered as a potential therapy for diabetes. The effect of FGF21 on the development and progression of diabetes-induced pathogenic changes in the aorta has not currently been addressed. To characterize these effects, type 1 diabetes was induced in both FGF21 knockout (FGF21KO) and C57B...
متن کاملCardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats
Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...
متن کاملAttenuation of Hyperlipidemia- and Diabetes-Induced Early-Stage Apoptosis and Late-Stage Renal Dysfunction via Administration of Fibroblast Growth Factor-21 Is Associated with Suppression of Renal Inflammation
BACKGROUND Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia). Increasing evidence suggests that fibroblast growth factor (FGF)21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced re...
متن کاملFoxO1 breaks diabetic heart
The incidence of type 2 diabetes is increasing explosively around the world. Both hyperglycemia and insulin resistance can cause myocardial damages with coronary atherosclerosis in type 2 diabetes. In addition, some patients show cardiac functional disorder, characterized by diastolic dysfunction, without ischemia. In a large prospective study in the Framingham cohort, patients with diabetes sh...
متن کامل